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Bright compact breathers
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In this communication we will consider the potential of some general classes of nonlinear lattice models to
support bright discrete compact breather solutions~compactlets!. We analyze the conditions for which such
solutions are possible and classify the models as belonging in three general categories: a class with no compact
breather solutions, one with one-parameter families of solutions, and a class with ‘‘isolated’’ solutions~i.e., no
free parameters!. In the latter two cases we construct the solutions and analyze their linear stability. The
drastically different stability features of these solutions in comparison with their smoothly decaying counter-
parts are discussed. Stable breather solutions with compact support are identified in the one-parameter families
of solutions, while the corresponding solutions found in the zero-parameter families are always found to be
unstable.
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I. INTRODUCTION

The fact that nonlinearity can lead to the compression
wave packets is well known. When the action of the nonl
earity is balanced by that of dispersion, which tends
spread out a pulse, stable localized pulses, named soliton~or
solitary waves more generally! are created@1#. This phenom-
enon is observed not only in continuum models, but also
discrete systems. As was first reported in@2#, and subse-
quently studied by many authors@3# the balance betwee
nonlinearity and dispersion leads to the creation oflattice
envelope solitons. These entities, however, appear when
nonlinearity is small enough: then the amplitude plays
role of the small parameter of the problem. Envelope solit
can be mobile and extend over tens or even hundred
sites. The region of localization decreases when the am
tude of the excitation increases. When the intensity~i.e., the
square of the amplitude! of the excitation is still small, but
the amplitude of the soliton is already comparable to un
~in dimensionless units!, moving solitary waves which hav
a higher degree of localization compared with the envel
solitons@4# can be obtained. These are described by the
crete Hirota equation. If the amplitude of a single site b
comes large enough, such that linear intersite interactions
much weaker than nonlinear self-action, strongly localiz
excitations~i.e., localized on very few sites! can exist@5,6#.
These are calledintrinsic localized modes~ILM’s ! and in the
last decade they have received a large amount of atten
Like envelope solitons, ILM’s appear as generic, robust
lutions of nonlinear lattice equations. In addition, the
modes, which are exponentially localized in space and t
porally periodic~which is why they are also calleddiscrete
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breathers!, are of particular interest due to their ability t
localize energy. As a result they have been theoretically p
posed as the relevant mechanism for many physical phen
ena. Already a number of review papers have appeared@7#
that summarize these exciting recent developments.

On the other hand, a class of continuum solitary wav
recently discovered is the one of solutions with compact s
port often referred to ascompactons@8#. These solutions,
contrary to what is the case for regular localized modes, h
nonzero values only in a neighborhood of the real line a
are strictly zero everywhere else. In particular, in many ca
of interest they behave like a power of a trigonometric fun
tion inside their domain of nonzero values. This clearly co
trasts with the exponential localization properties of regu
ILM’s and of envelope solitons.

A question that then naturally arises concerns whether
creteness can preserve solutions with compact suppor
particular, it is of interest to examine whether a differe
class of breathers with compact support can be presen
discrete setups. Only a few authors have considered
question to our knowledge. In@9#, for Klein-Gordon chains,
a compacton solution was found for the continuum analog
the equation and quasicompactification of the breather s
tion was observed for the genuinely discrete problem, but
numerical experiments were not conclusive. More recen
some case examples of discrete compactly supported bre
ers were considered in Fermi-Pasta-Ulam~FPU! chains@10#.
For defocusing nonlinearities, in discrete nonlinear Sch¨-
dinger ~DNLS! type contexts the recent work of@11# dem-
onstrated the existence of such compact breathers for a
cial class of models. But a more systematic understandin
the nature and classes of possible solutions and the co
tions for their existence and stability is still lacking. Furthe
more, we should note that for some classes of continu
type models, all compacton solutions have been argued t
stable@12#.
©2002 The American Physical Society14-1
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From the above exposition, it can be clearly seen tha
more careful examination of the possibility of formation
discrete compact breathers would clearly be desirable.
will hereafter call such solutions compactlets to highlig
their genuinely discrete nature~see below!. In exploring
these topics, we will essentially follow a reverse engineer
approach. That is to say that we will, in a form of expe
mental mathematics, consider a general class of models w
out focusing concretely on its physical motivation. This is
approach often used in continuum studies of compact
@8,13#. Here, we will study a benchmark system of DNL
type equations~i.e., discrete Schro¨dinger type equations with
a nonlinear term and sharing the monochromatic gauge
variance of the regular NLS equation! for rather general
classes of nonlinearities.

Our presentation will be structured as follows. In Sec.
we will present the classes of models of interest and ana
cally obtain some relevant conclusions on the existence
breather solutions with compact support. We will also c
egorize general nonlinearities on the basis of this analysis
Sec. III, we will numerically construct such compactlet s
lutions and analyze their linear stability and dynamics.
nally, in Sec. IV, we will summarize our findings and co
clude.

II. ANALYTICAL CONSIDERATIONS

The general class of dynamical lattice models that we w
consider will be of the form

i ċn52D2cn1 f ~cn21 ,cn ,cn11!, ~1!

whereD2cn5C(cn111cn2122cn) is the discrete Laplac
ian, C is a real constant~the so-called coupling constant!,
and the nonlinearity of a rather general type is restricted
the symmetry f (cn21 ,cn ,cn11)5 f (cn11 ,cn ,cn21) and
by the phase invariance that f „exp(iLt)un21,
exp(iLt)un ,exp(iLt)un11…5exp(iLt)f(un21,un ,un11) (L be-
ing real!.

Notice that we will consider only nearest neighbor inte
actions in this work. Furthermore, we consider nonlinearit
that are symmetric with respect to their inclusion of the l
and right neighbors. This is, of course, not necessary for
general consideration, but considerably simplifies the ex
sition as we need to treat only one ‘‘end’’ of the compac
supported breather structure in what follows.

The approximation of the nearest neighbors allows us
introduce a definition of anN-site compacton as a lattic
excitation such thatun01 j[0 for j <21 and j >N and

un01 jÞ0 for j 50,1, . . . ,N21.

We will set C51 and vary the frequencyv of the exci-
tation ~one can easily show that one of these two quanti
can always be scaled to a unit value!. Finally, an important
observation concerns the signs of the linear and nonlin
terms in the right hand side of Eq.~1!. The opposite signs
denote that we will have in mind defocusing nonlinearit
for the creation of bright compactlet solutions. It should a
be noted that the prototypical functional forms that one
in mind when writing the generalized Eq.~1! are f (x,y,z)
06661
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5uyu2y ~in the case of the regular DNLS equation@7#! and
f (x,y,z)5uyu2(x1z) for the well-known integrable varian
of the DNLS equation, namely the Ablowitz-Ladik NLS
~AL-NLS! @14#.

For monochromatic solutions of the formcn(t)
5exp(2ivt)un , we obtain the stationary problem

vun1~un111un2122un!5 f ~un21 ,un ,un11!. ~2!

To identify compactly supported breather solutions in t
lattice setup of the class of Eqs.~1! and~2!, we argue that it
is crucial to consider theun021th site ~if un0

Þ0) for which
the field is exactly zero. It is obvious that for existence o
compactlet one must requiref (0,0,0)50 in Eq. ~2!. This
indicates that the solutions considered herein will be parti
lar to discrete systems~hence the name compactlets!.

The equation for the siten5n021, for whichun02150,
will read

un0
5 f ~un0

,0,0!. ~3!

Even though this equation is rather trivial to obtain, it h
significant implications that we should now examine. Fir
this equation suggests that it is impossible to support br
compactlets for an on-site substrate potential of the fo
V(un ,un

!) ~the asterisk denotes complex conjugation!. For
such a potential Eq.~3! will directly yield un0

50 and all
subsequent ordinates will also vanish. Hence the reg
DNLS equation willnot support such compactly supporte
structures. But it is easy to observe that neither will the A
NLS equation, given its form off. One then wonders whethe
there are generalized forms off that could satisfy this equa
tion with solutions other thanun0

50. A general class of such
nonlinearities is

f ~x,y,z!5g~ uyu2!~x1z! ~4!

for which g(0)Þ0. A simple but rather general example
that form is given by

g~s!5
A1Bsk

A1Csl
. ~5!

It should be observed here that for the purposes ofg of Eq.
~5! it is important that the constant factors in the numera
and the denominator are the same~and different from zero!.
Notice that if that is not so then Eq.~3! still yields un0

50.

More generally, forf ’s which are linear in their inclusion o
the nearest neighbors, it should be true thatg(0)51. In that
case, Eq.~3! becomes an identity and hence no constrai
are imposed on the selection of the compactlet parameter
this equation. This is crucial and will be contrasted with t
class of models given below.

The conditiong(0)51 requires the absence of linear di
persion. Indeed, let us consider the weakly nonlinear li
whereg(un

2)'11g8(0)un
2 . Then model~4! can be rewritten

as (v22)5g8(0)un(un211un11). A direct consequence o
this formula is that in the small amplitude limit compactle
can be either one site or two site. The one-site compac
4-2
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BRIGHT COMPACT BREATHERS PHYSICAL REVIEW E65 066614
represents a trivial case. To consider the case of a two
compactlet we observe that for the first~from the left! ex-
cited siten0 we have (v22)5g8(0)un0

un011. Then, con-

sidering the siten011 we obtain g8(0)un011un0125(v

22)2g8(0)un0
un01150, i.e., un01250. The provided

analysis led us to the conjecture that for existence of
M-site compactlet withM>3 there exists a threshold ampl
tude. We will give numerical evidence in support of th
conjecture in Sec. III.

For linear coupling of the nonlinear term with its neare
neighbors~i.e., for f ’s linearly dependent onx,z), Eq. ~3!
can only amount to an identity when looking for solutio
with compact support. However, it is not necessary forf to
depend linearly on (x,z). An example of this type can b
found in @11,15# with

f ~cn21 ,cn ,cn11!5A
~cn11

2 1cn
2!cn11

!

11ucn11u2
1hcn

ucn11u2

11ucn11u2

1~n11→n21,n!, ~6!

where the last parenthesis denotes the same expressio
with the relevant change of indices. An alternative exam
of this type discussed in@11,16# reads

f ~cn21 ,cn ,cn11!5A
~cn11

2 1cn
2!cn11

!

11ucn11u2
1hcn

12ucn11u2

11ucn11u2

1~n11→n21,n!. ~7!

In both models the factorA in front of the first fraction was
absent in@15,16#. Its role in our exposition will be evident in
what follows.

It is straightforward to see that in this case Eq.~3! will
~generically at least! no longer be an identity. On the con
trary, it will be an equation that determinesun0

. In particular
in the case of both models discussed above, Eq.~1! yields

uun0
u25

1

A21
, ~8!

which reveals that compactlet solutions will be present o
for A.1. In contrast to the case of Eq.~4!, here we do not
have a linear limit.

In view of the above results, we can classify general n
linear lattice equations of the form of Eq.~1! as follows.

~1! The class of equations with no compactlet solutions
subset of this set is the one with on-site nonlinearities~in-
cluding the DNLS equation! as well as the set of linear nea
est neighbor couplings such thatf (x,0,z)Þ(x1z) ~including
the AL-NLS equation!.

~2! The class of models with one-parameter families
compactlets: since Eq.~3! becomes an identity, in the case
an M-site compactlet there will always beM21 equations
for M unknowns (M21 site ordinates and the frequency
the compactly supported breather!. These will generically ad-
mit one-parameter families of solutions. The nonlinearity
Eq. ~4! belongs to this type ifg(0)51.
06661
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~3! Finally, the class of solutions with no free paramete
where Eq.~3! determinesun0

and the remaining set ofM

equations will determine the ordinates ofM21 sites and the
frequency of the compactly supportedM-site breather. The
models of Eqs.~6! and ~7! belong to this category forA
.1.

Almost all of the above results have been obtained b
careful consideration of Eq.~3!.

Now, let us give some case examples.
For nonlinearities of the form of Eq.~4!, for a one-site

compactlet,un0
can be arbitrary andv52. More generally

for f satisfying identically Eq.~3!, un0
is arbitrary andv

521 f (0,un0
,0)/un0

. In the same case, for two-site brigh

compactlets of the form cn5exp(2ivt)
3( . . . ,0,un0

,un0
,0, . . . ), un0

will be arbitrary andv51

1g(uun0
u2) for g of Eq. ~5!, while for generalf ’s v51

1 f (un0
,un0

,0)/un0
. Finally, for three sitescn5exp(2ivt)

3( . . . ,0,u0 ,u1 ,u0,0, . . . ), therelevant equations become

v225
f ~u0 ,u1 ,u0!22u0

u1
, ~9!

v225
f ~u1 ,u0,0!2u1

u0
. ~10!

We give the above equations to demonstrate the point
the equations will result in solvability conditions for eac
site in terms ofun0

.
More generally, following what is known for regula

ILM’s from @5,6#, there will be two main types of discret
compactlet, one that is centered on a sitenc5N and one that
is centered between sitesnc5N11/2 ~the subscriptc for
center!. In the former case, the central site equation will re

v225
f ~uN21 ,uN ,uN21!22uN21

uN
, ~11!

while in the latter it will be

v225
f ~uN21 ,uN ,uN!2~uN211uN!

uN
. ~12!

Similar considerations/calculations can be used for
models in which the coupling to the nearest neighbors
nonlinear as in Eqs.~6! and~7! above. In the latter case, fo
example, in the case of a two-site compactlet of the fo
cn5exp(2ivt)( . . . ,0,un0

,un0
,0, . . . ), the frequency is

given by

v21521
h

A
, ~13!

v21521h
22A

A
~14!

in the two models, respectively.
4-3
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FIG. 1. The left panel shows a one-site discrete compactlet.v52, un0
55. Unless otherwise stated, the results areg(uunu2)51/(1

1uunu2). The right panel shows the two-site solution~and its linear stability! for v51.038 andun0
55. The linear stability analysis show

the complex plane (l r ,l i). The subscripts denote the real and imaginary parts of the eigenfrequencyl. Since there are no eigenfrequenci
with nonzero imaginary part, the configuration will be stable.
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Finally, a note of caution is in order. The technique
continuation of ILM’s from the anticontinuum limit@7,17#
has been very popular for ILM’s in recent years. In partic
lar, in many cases~see, e.g.,@18#! the fact that ILM’s are
very strongly localized for weak couplings between the n
linear oscillators has been exploited in considering them
consisting of only a few sites and studying their stability a
dynamics in this few degree of freedom approximatio
There should be no confusion between such modes and
ones presented herein. In our work, the modes are exac
lutions of the stationary equations of interest and there is
approximation or weak coupling limit. Furthermore, th
modes considered here are distinctively different from re
lar ILM’s. The latter plotted on a semilogarithmic scale f
NLS type equations can be clearly seen to have an expo
tial tail. On the contrary, the classes of discrete breath
considered here have strictly zero ordinates beyond the
gion of their support.

III. NUMERICAL RESULTS

We now turn to numerical experiments to investiga
compactlet solutions and their stability. In particular, in ord
to create these modes, we solve Eq.~2!, but not for an infi-
nite lattice. We rather solve it only for the sitesn
51, . . . ,N, when the discrete compact breather is cente
either at siten5N @the case of a (2N21)-site compactlet# or
at n5N11/2 ~the case of a 2N-site compactlet!.

While studying the stability of anM-site compactlet it is
natural to consider perturbations of the whole chain. In w
follows, however, we show that the small excitations of t
sites which initially had zero displacements can be dec
pled from the excitations of their neighbors. This imme
ately leads us to the conclusion that one-site and two-
compactlets are stable for the class of models with o
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parameter families of solutions, as they can exist for a
given amplitude. In Fig. 1 these results are illustrated
direct numerical computation of the solutions and their s
bility.

In order to studyM-site compactlets withM>3 (M
52N or M52N21), we prescribeuN for the class of equa-
tions with one free parameter. Forn5N, we use the appro-
priate equation of Eqs.~11! and ~12!, depending on whethe
we are interested on a mode centered on a site or cent
between sites, and solve the resultingN equations for
u1 , . . . ,uN21 and v. We then form the full solution~by
symmetrizing the solution forn.N) and perform linear sta-
bility analysis. In particular, iff is given by Eq.~4!, then
usingcn5exp(2ivt)(un

(0)1eun
(1)), we obtain the linearization

equation forun
(1)

i u̇n
(1)52vun

(1)2D2un
(1)1g~ uun

(0)u2!~un11
(1) 1un21

(1) !

1g8~ uun
(0)u2!~un11

(0) 1un21
(0) !

3~un
(0)un

(1)!1un
(0)!un

(1)!. ~15!

It is a direct consequence of this equation thatun
(1)

}exp(il6t) wherel656(v22) for all n,n0 and n.n0
1M21; these represent stable excitations and the respe
pair of eigenfrequencies will be present in the stability ana
sis of any such compactlet. This also means that one
restrict consideration to excitations of merely the sites t
are ‘‘participating’’ in the original discrete compactly sup
ported breather. Another general statement about the stab
analysis of a compactlet is that due to the phase invaria
~of the classes of models considered here! one will necessar-
ily have two zero eigenvalues.

Let us now consider in more detail the stability of a thre
site compactlet (. . . ,0,u0 ,u1 ,u0,0, . . . ), situated on the
4-4
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FIG. 2. Stable~left panels! and unstable~right panels! three-site~top panels! and four-site~bottom panels! solutions. For the top left pane
v50.6677 andun0

55, while for the top rightv51.4323 andun0
51.3. For thebottom leftv50.4739 andun0

55, while for the bottom
right v50.9996 andun0

57. The linear stability analysis in the case of the left panel indicates stability, whereas the imaginary eig
quencies in the case of the right panel show that the latter configurations are unstable.
t t
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-
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sitesn521, 0, 1. To this end, we rewrite Eq.~15! in terms
of the renormalized displacementsw615u1u61

(1) and w0

5u0u0
(1) :

iẇ615w02w611a0~w611w61
! !, ~16!

iẇ052w01 1
2 ~w11w21!12a1~w01w0

!!, ~17!

where the overdot stands for the derivative with respec
(v22)t and

aj5
g8~uj

2!u0u1

v22
5

g8~uj
2!u0

2

g~u0
2!21

~18!

where j 50,1.
is positive for a decaying functiong(x). One can now con-
sider the eigenfunction transformation$wj ,wj

!%→$wj
!

06661
o

1wj ,wj
!2wj% Then, seeking solutions proportiona

to exp(ilt8), where t85(v22)t, we obtain the
eigenfrequencies

l6
(0)50, l6

(1)56A122a0, l6
(2)56A422a024a1.

~19!

These need to be multiplied byv22 to be converted into
eigenfrequencies of the original eigenvalue problem of E
~15!. Considering the whole chain one has to addl6 to
obtain the complete set of eigenfrequencies.

It follows from Eqs.~18! and~19! that three-site compact
lets can be stable or unstable, depending on the ordinate
the sites. This conclusion has also been confirmed num
cally ~see, e.g., the two top panels of Fig. 2!.

In a more general case, usingun
(1)5an exp(2ilt)

1bn exp(il!t), we obtain an eigenvalue problem fo
4-5
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FIG. 3. The figure shows more exotic but highly unstable compactlet configurations. The left panel shows a compactlet withv50.9117
andun0

54.5. One canobserve two complex eigenfrequency quartets due to the presence of two oscillatory instabilities. The relevan
eigenfrequencies have (l r ,l i)5(60.7289,60.0965) and (l r ,l i)5(60.3800,60.1139).Another elaborate spatial structure is show
in the right panel withv52.7279 andun0

56. The relevant quartet of eigenfrequencies is (l r ,l i)5(60.6379,60.0337).
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$l,$an ,bn
!%%, which is subsequently solved numerically

identify the stability of the configurations. In the comput
tions presented here,

g~ uunu2!5
1

11uunu2
~20!

was used, but the main conclusions were also verified fog
5(12uunu2)/(11uunu2).

In particular, as a result of the numerical computations
the one-parameter families of compact discrete breather
was found that four-site compactlets, similarly to three-s
ones, can be either stable or unstable~see, e.g., the two bot
tom panels of Fig. 2!. However, gradually, as the size of th
configurations grows, the range of stability of multi-site co
figurations is quite small and most configurations found
N>3 ~i.e., with five or more sites! were most often unstabl
in the cases examined; however, some stable configura
were found, for instance from the concatenation of sma
stable~e.g., three-site! building blocks. An example of more
exotic ~but unstable! compactlets is shown in Fig. 3. Show
also are the corresponding instabilities, which do not alw
stem from imaginary eigenfrequencies but can also be o
latory, giving rise to Hamiltonian Hopf bifurcations@19#.

A significant difference should be highlighted betwe
these solutions and the ones known for regular DNLS t
equations. For the latter, the site-centered mode@5# is well
known to be stable, while the intersite-centered@6# mode is
known to be unstable~see, e.g.,@7#!. In the case of compact
lets, both solutions appear to be stable. This seems to b
partial agreement with the conclusions of@12# about different
classes of compactons being stable. On the other hand, i
discrete case, contrary to the continuum observations of@12#,
for a larger number of sites, most solutions are unsta
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particularly so for compactlets involving five or more site
For three and four sites, we were able to identify both sta
and unstable solutions depending on the values of the o
nates. This is also not common to DNLS type equations~at
least in 111 dimensions!. For instance, a single pulselik
ILM is always stable if it is centered on a site and alwa
unstable if centered between sites. This conclusion does
depend on the ordinates of the mode’s lattice sites. Furt
more, the spectrum of the compactlets does not include
spectrum of the background state on which they exist. Thi
in sharp contrast with the well-known results for regu
ILM’s. In particular, in the case of a DNLS equation in
11 dimensions, the standing wave pulselike solutions of
focusing case, or the kinklike solutions of the defocusi
case~dark solitary waves!, encompass the so-called phono
band or continuous spectrum. The continuous spectrum c
sists of the extended wave excitations permissible by
uniform steady state on which the ILM exists. This contin
ous spectrum alongside the point spectrum of localized (L2)
eigenfunctions constitutes the full linearization spectru
However, this is not true for the compactlets. In the lat
case, the decoupling~see above! of perturbations along the
compactlet sites and those along the rest of the lattice s
essentially causes the ‘‘collapse’’ of the continuous spectr
to a single eigenfrequency (l6). Finally, oscillatory insta-
bilities do occur for bright compactlets as they do for th
regular ILM counterparts, provided thatp phase differences
appear in the coherent structure~see, e.g.,@20#!.

The time evolution of compactlet instabilities was prob
by means of numerical time integration~using explicit fourth
and eighth order Runge-Kutta integrators!. It was found that
in the case of three or four sites where there are structur
similar configurations which are stable, the compac
would not be structurally destroyed but would rather osc
late and thus approach such stable configurations. Hig
4-6
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FIG. 4. The time evolution of the configuration of the right panel in Fig. 3. The top left and right panels show the time evolution
two central-most sites of the compactlet. The two bottom panels show the snapshots of the spatial profile of the configuration att50 ~the
initial condition of the exact compactlet plus a small perturbation along the unstable eigendirection! in the left panel and the configuratio
at t5200 ~right panel!. t5200 was the duration of this simulation, but we also performed numerical experiments up tot52000, observing
that the compactlet gradually breaks up into smaller stable entities~predominantly single site compactlets!. It is interesting to note that no
visible signs of extended wave radiation traveling toward the boundaries have been observed in these runs.
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unstable configurations with a large number of sites w
found to be destroyed. Such an example occurs in the ca
the oscillatory instability of one of the structures shown
Fig. 3. The oscillatory instability@being manifested in a quar
tet of eigenfrequenciesl5(60.6379,60.0337)# is seen to
destroy the discrete compactlet through oscillations of
creasing amplitude in Fig. 4. It is, however, noteworthy, th
no significant extended wave radiation appears to be pre
in the simulation.

To complete the consideration of one-parameter fami
of compactlets we display in Fig. 5 the dependence of
displacements of the side atoms of a five-site compactlet
sus the displacement of the middle atom~which determines
the amplitude of the compactlet!. It was conjectured in the
previous section that the amplitude of the five-site compa
let has an existence thresholduth ; namely, at u35uth

(1)

'3.73 the displacement of the first atom becomes identic
zero ~also the second atom’s displacement ‘‘jumps’’ to
lower value!. At this amplitude value the five-site compactl
degenerates into a three-site compactlet. That is to say
lower amplitude values only three sites have nonvanish
ordinates and hence five-site compactlets can exist only
u3.uth

(1) . Subsequent decrease of the central site amplit
results, foru35uth

(2)'1, in the transformation of the three
site compactlet into a one-site one~and thus three-site com
pactlets will exist foru3.uth

(2)). These transitions can b
06661
e
of

-
t
nt

s
e
r-

t-

ly

or
g
or
e

observed in Fig. 5 and are naturally reflected in the dep
dence of the frequency of the compactlet on its amplitu
@see Eq.~11!#: it has two ‘‘jumps’’ at uth

(1) anduth
(2) .

Finally, from the class of models with no free paramete
the model of Eq.~6! was examined and since the lineariz
tion problem is extremely tedious, for simplicity the ca
with h50 was considered. However, in the latter case all
solutions identified were found to be unstable~and hence are
not shown!. Some intuition about this instability~even
though this is not a proof! may be obtained on the basis o
lack of free parameters in the configuration. Once a per
bation is performed there is no other configuration of t
type to reshape into~i.e., no other ‘‘fixed point,’’ in the space
of configurations, of the same type in the vicinity of th
original solution! and hence itmaybe more natural to expec
in this case that the configuration will be destroyed.

IV. DISCUSSION

In this work we have discussed the possibility of form
tion of compactly supported, breathing in time cohere
structures in discrete models with nearest neighbor inte
tions ~both linear and nonlinear!. The compactlet solutions
considered here are genuinely discrete and have no
tinuum analog. A number of conclusions have been infer
from the equation for the first site beyond the compac
4-7
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FIG. 5. The top panel of the figure shows for a five-site compactlet the dependence of the frequency as a function of the disp
of the middle~i.e., n53) site. The middle panel shows the dependence of the first siteu1 as a function ofu3, and the bottom panel the
dependence ofu2 on u3. Notice, as we proceed from the right of the figure toward the left, the very clear transition from a five-sit
three-site compactlet atu35ucr

(1)'3.73, and the less abrupt but also discernible transition from the three-site compactlet to a o
compactlet foru35ucr

(2)'1 ~see also text!.
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supported solution. On the basis of this equation, we h
provided a general classification of models to ones that c
not support compactlets, ones that have one-parameter f
lies of such solutions, and ones that have zero-param
families ~i.e., isolated solutions! of that form. Many of the
well-known models such as the DNLS and AL-NLS equ
tions belong in the first class. We also specified and stud
examples of the latter two categories. We analyzed the
tails of such compactlet solutions and calculated them
plicitly in simple cases~of few lattice sites!. We then pro-
ceeded to construct such solutions numerically. While in
case of no free parameter models we found even the sim
compactlets to be unstable, in the case of one free param
the single-site and two-site compactlets were always sta
It was found that for larger numbers of sites in these comp
discrete breathers, they will be mostly unstable, even tho
in some cases~especially for three- and four-site compac
lets! stable such solutions exist. We have conjectured that
one-parameter family of compactlets possesses a thres
amplitude below which anN-site (N.2) compactlet canno
exist. Numerical evidence in support of this conjecture
the cases ofN53 andN55 has been provided.

Naturally, as this type of discrete breather is only start
to be explored, there are many questions that merit con
eration and would be of interest to future studies. One
06661
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e-
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e
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ter,
le.
ct
h

e
old

r

g
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them concerns whether experimentally realizable phys
models containing such modes can be identified and co
quently whether such solutions can be observed. In eluci
ing some of the aspects of the nonlinearities permitting s
solutions, we hope it will become easier to answer this qu
tion in the near future. Furthermore, understanding more
tails about the point spectrum of such compactlets may pr
very significant in identifying their stability picture and un
veiling their characteristics. Additional future directions i
volve the interaction of such coherent structures and th
characteristics of motion in the discrete setup~i.e., whether
they shed radiation waves or not!. Research work in these
areas is currently in progress and will be reported in fut
publications.
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